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Abstract
The atomic-scale magnetic structures of two terbium-substituted
(Fe0.83−x Tbx)B0.17 metallic glasses have been determined by polarized beam
neutron scattering measurements using the IN20 spectrometer at the Institut
Laue-Langevin, Grenoble. The four spin-dependent, neutron scattering cross-
sections were measured in absolute units for the two glasses. The spin-flip
cross-sections ∂σ +−

∂�
and ∂σ−+

∂�
were found to be small; they were independent of

the scattering vector Q, independent of the temperature and were also of the
same magnitude as the nuclear incoherent cross-section, within experimental
errors. These observations indicate that the magnetic structure in these glasses
must be collinear. The non-spin-flip cross-sections were found to have a hith-
erto unobserved shift of the first peak between the ∂σ ++

∂�
and ∂σ−−

∂�
channels.

A (collinear) ferrimagnetic state which is consistent with the spin-flip cross-
sections is therefore proposed for these glasses. The magnetic moments on
the terbium atoms are aligned antiparallel to those on the iron atoms, and the
values of both moments reduce to zero by x = 0.50 terbium, in agreement with
magnetization data. A calculation of the non-spin-flip cross-sections based on
this model correctly predicts the shift of the first peaks. This behaviour arises
because of the ferrimagnetic correlations between the magnetic moments and
the very strong magnetic scattering from the terbium atoms.

1. Introduction

The magnetic ground state of the transition-metal–metalloid (TM–met) metallic glasses
(of which Fe0.83B0.17 is the prototype), has been the subject of considerable interest since
Mizoguchi first presented a review of the compositional dependence of their Curie temperature
TC and their mean magnetic moment 〈µ〉 [1]. It is generally accepted that the variation of TC and
〈µ〉 for those glasses based on the elemental ferromagnets (Fe, Ni, Co-met) can be explained
with a simple rigid band model (plus charge transfer from the metalloid atoms). Alloying with
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manganese, chromium and vanadium on the other hand, gives a much more rapid reduction
in 〈µ〉 which has been tentatively associated with larger ‘free atom’-like moments which are
directed antiparallel to the net magnetization [1]. More recently, the presence of non-collinear
ferromagnetism in TM–met glasses [2–4] has introduced another factor which influences the
values of 〈µ〉 derived from bulk properties such as magnetization. Measurements of TC and
〈µ〉 have also been extended to alloys of transition metals from the second and third rows of
the periodic table and complex magnetic phase diagrams have been found. These can include
ferromagnetic, spin-glass and re-entrant spin-glass phases [5]. Alloying TM–met glasses
with the rare earths is of interest because of the possibility of both antiparallel and non-
collinear alignments of the magnetic moments, similar to those observed in the amorphous
RE–TM2 alloys, described by the random anisotropy model [6]. (TM, RE)–met glasses are
also of technological interest because if their magnetostrictive properties can be sufficiently
enhanced, they will have potential applications in devices, since their ribbon geometry reduces
eddy current effects at high frequencies [7]. Studies of the variation of the magnetization and
Curie temperature TC in (Fe0.82B0.18)1−x Tbx glasses have been made, for example [8], and
these show a compensation point in the magnetization at x = 0.22 terbium. The magnetic
phase diagram shows a steady fall in TC with increasing terbium concentration that is apparently
accompanied by the growth of a ‘random anisotropy phase’ below the spin freezing temperature
Tf , which has a maximum value of Tf ≈ 150 K (see figures 1 and 2 of [8]). The search for
non-collinear ferromagnetism in this ‘random anisotropy phase’ was the main motivation for
the present measurements.

Note that the type of terbium substitution (Fe0.82B0.18)1−x Tbx used in [8] gives a slightly
different stoichiometry from the two (Fe0.83−x Tbx)B0.17 samples used in this study. The present
method avoids boron-deficient glasses at large values of x , which may be close to the edge of
the glass-forming range (0.09 < B < 0.28 for FeB glasses [9]), although, in fact, no evidence
of crystalline contamination was found in [8].

2. Sample preparation and experimental method

Spectrographically pure iron, terbium and boron were melted and thoroughly mixed in an argon
arc furnace to make several master ingots of ≈10 g of Fe0.78Tb0.05B0.17 and Fe0.73Tb0.10B0.17

alloys. Each of these was divided into two or three pieces and melt-spun in a helium
atmosphere onto a steel wheel. When terbium is added to Fe0.83B0.17 the resulting glass
becomes increasingly more brittle, so the metallic glass ribbon obtained was in short lengths
≈1 mm wide and ≈25 µm thick. Isotopically enriched boron (which reduces the absorption of
thermal neutrons) was not used in this preparation, since the material supplied can sometimes
influence the viscosity of the melt. X-ray diffraction scans were made to confirm the glassy
state of the ribbon samples.

The neutron experiments were made at the IN20 diffractometer at the Institute Laue-
Langevin. This has Heusler alloy crystals as monochromator and analyser and spin-flippers
in the incident and scattered beams, so that the four spin-dependent scattering cross-sections
( ∂σ ++

∂�
, ∂σ−−

∂�
, ∂σ +−

∂�
and ∂σ−+

∂�
[10]) can be obtained. Most of the experimental details were

identical to those specified in our previous measurements on IN20 [3, 4, 11], except that the
(brittle) ribbons, which had masses 3.211 g (Fe0.78Tb0.05B0.17) and 1.281 g (Fe0.73Tb0.10B0.17),
were placed in cylindrical aluminium holders. A vertical magnetic field of 2 T was applied
to the samples to saturate the domains and avoid depolarization effects. The two samples
were measured at 8 and 300 K, over a range of scattering vectors 1.0 Å−1 < Q < 6.5 Å−1,
where Q = 4π sin θ/λ. The data analysis was performed using our own programs which
have been described in detail elsewhere [4, 12]. Note that it is quite difficult to make perfect
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Table 1. Values of the mean spin-flip cross-sections 〈∂σ±∓/∂�〉 and the slope of a linear trend
line through the cross-sections shown in figures 1(a) and 2(a) are given. They show that these
cross-sections are equal to 2/3(∂σNSI/∂�) and also flat over the measured Q range, to within
experimental errors.

Mean value of Slope of 〈∂σ±∓/∂�〉vQ
Composition Temperature (K) 〈∂σ±∓/∂�〉a barns sr−1/atom barns sr−1/atom Å

Fe0.78Tb0.05B0.17 300 0.02 ± 0.01 −0.001 ± 0.003
8 0.03 ± 0.02 −0.002 ± 0.003

Fe0.73Tb0.10B0.17 300 −0.02 ± 0.01 −0.003 ± 0.010
8 −0.02 ± 0.01 −0.000 ± 0.008

a 2/3(∂σNSI/∂�) = 6.9 × 10−3 barns sr−1/atom.

corrections for the background scattering and the absorption when (as here) the Bragg peaks
from the aluminium sample holders are so much more intense than the signals from the samples.
However, the Bragg peaks are well localized in Q and do not compromise the broad features of
the diffuse scattering from the glassy samples, which is derived from this type of measurement.

3. Spin-flip cross-sections

The present polarized beam neutron scattering experiments involve the absolute measurement
of four spin-dependent scattering cross-sections. Their application to metallic glasses has been
discussed previously [2–4] so only a brief outline will be given here.

In one standard configuration [10] of the IN20 instrument, the y-axis is parallel to the scat-
tering vector Q and the vertical magnetic field lies along the z-axis. If a neutron passes through
the sample and the direction of its spin is changed because of interactions with the magnetic
spins S, then the spin-flip cross-sections ∂σ +−

∂�
and ∂σ−+

∂�
are identical and are given by [10]

∂σ±∓

∂�
= 2

3

∂σNSI

∂�
+

∣
∣
∣
∣
∣

〈
∑

i j

(di Sxi d
∗
j S∗

x j ) exp(iQ(ri − r j))

〉∣
∣
∣
∣
∣
. (1)

Here 2
3

∂σNSI
∂�

is the nuclear spin incoherent cross-section which has the value 6.9 × 10−3 barns
sr−1/atom for both samples, because it is dominated by their boron content [13]. In the second
term, di Si is the magnetic scattering amplitude of the i th atom which carries a spin Si and
in particular depends on only the non-collinear components Sx of the magnetic spins. The
parameter di = (γ e2/2mc2)gi fi (Q) contains the magnetic form factor fi (Q). The second
term in equation (1) arises exclusively from neutron magnetic scattering. This means that if the
spin-flip cross-sections are larger than 2

3
∂σNSI
∂�

, this provides direct evidence of non-collinear Sx

components of the magnetic spins. Conversely, if they have the same magnitude as 2
3

∂σNSI
∂�

, then
the non-collinear Sx components of the magnetic spins must be zero and the magnetic struc-
ture is a conventional, collinear ferromagnet. A finite spin-flip cross-section can, of course,
be analysed to provide information on the spatial variation of the Sx components of the spins.
In an asperomagnet [6] or a random cone structure [3], for example, the Sx components of
the spins point in random directions and there are no spatial correlations between them. The
second term in equation (1) then reduces to 〈d2 S2

x 〉 and the spin-flip cross-section follows a
form-factor dependence 〈 f (Q)2〉.

The average of the ∂σ +−
∂�

and ∂σ−+

∂�
spin-flip cross-sections measured for the Fe0.78Tb0.05B0.17

sample at 8 and 300 K are shown in figure 1(a) and those for the Fe0.73Tb0.10B0.17 sample in
figure 2(a). The error bars are greater in figure 2(a) because of the smaller mass of the sample.
Both these cross-sections are extremely small (see table 1), and probably close to the lower
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Figure 1. The average spin-flip cross-sections 〈∂σ±∓/∂�〉 measured for the Fe0.78Tb0.05B0.17
sample at 300 K ( ) and at 8 K (•) are shown in (a) and the non-spin-flip cross-sections
∂σ−−/∂�(◦) and ∂σ ++/∂� (�) measured at 300 and at 8 K over the same Q range are shown in
(b) and (c), respectively. Note the change of scale (10×) on the ordinate between (a) and (b)/(c).

limit of what can be measured with such samples in this type of experiment. They are also
equal, within the experimental errors, to the nuclear spin incoherent term. All this suggests
that the magnetic structures in these samples are collinear. In addition, trend lines fitted to
these cross-sections show that all four sets of data are flat and that their slopes are zero, to
within the experimental errors; see table 1. This rules out the presence of a random cone and
asperomagnetic structures which would give form-factor-dependent cross-sections. Finally,
the spin-flip cross-sections measured at both 8 and 300 K are superimposed in figures 1(a)
and 2(a) (using different symbols), and they are statistically identical. This also rules out
any significant magnetic contribution to these cross-sections, which would otherwise vary by
about 40% between 8 and 300 K as the aligned components of the magnetic moments vary
with temperature (see below).
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Figure 2. The average spin-flip cross-sections 〈∂σ±∓/∂�〉 measured for the Fe0.73Tb0.10B0.17
sample at 300 K ( ) and at 8 K (•) are shown in (a) and the non-spin-flip cross-sections ∂σ−−/∂�

(◦) and ∂σ ++/∂� (�) measured at 300 and at 8 K over the same Q range are shown in (b) and (c)
respectively. This shift of the first peak between the two non-spin-flip cross-sections is more
strongly developed for this 10% terbium sample. The solid and dotted lines in (b) and (c) are a fit
to the data based on the structural model described in the text.

4. A collinear ferrimagnetic structure for (Fe0.83−xTbx)B0.17 glasses

The magnetic phase diagram for the (Fe0.82B0.18)1−x Tbx glasses given in [8] shows the presence
of a ‘random anisotropy phase’ at low temperatures. However, the measured spin-flip cross-
sections given in figure 1 suggest that (Fe, Tb)B glasses are more likely to have collinear
ferrimagnetic structures. A simple, collinear ferrimagnet with the magnetic moments on the
iron and the terbium atoms based on their elemental values will therefore be presented in this
section.

Figure 1 of [8] shows the variation of saturation magnetization with composition in a
series of (Fe0.82B0.18)1−x Tbx glasses. It falls rapidly with the addition of terbium and reaches
zero at the composition x = 0.50. This graph can be redrawn by replotting the points for
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Figure 3. The suggested variation of the mean magnetic moment per site of 〈µ〉 for collinear
ferromagnetic (Fe0.83−x Tbx )B0.17 glasses is shown by the solid line, together with data points
derived from the measured variation of the magnetization presented in figure 1 of [8].

x = 0.30 and 0.40 terbium below the abscissa to create the classic graph for a ferrimagnet,
which emphasizes the compensation point at x ≈ 0.22 terbium [8]. In addition, the saturation
magnetization of the parent Fe0.82B0.18 glass of 1292 kA m−1 can be attributed to the saturated
moment of 2.2 µB on every iron atom [9], so the ordinate can be rescaled to give the mean
magnetic moment per site for these glasses 〈µ〉. In the simplest case, this value is the difference
between an aligned moment of µFe = 2.2 µB on each iron atom and µTb = −9.34 µB aligned
antiparallel on each terbium atom. The mean magnetic moment per site is then

〈µ〉 = (1 − 2x)[0.82(1 − x)µFe − xµTb], (2)

where linear reduction (1−2x) allows for the suppression of the ferrimagnetic state at x = 0.50.
This prediction and the values of 〈µ〉 derived from [8] are shown together in figure 3. Whilst
the agreement is not perfect, it does at least support the use of this simple model as a working
hypothesis. Note that the two glasses from the (Fe0.82B0.18)1−x Tbx series [8], with x = 0.05
and 0.10, have ternary compositions of Fe0.779Tb0.05B0.171 and Fe0.738Tb0.10B0.162 which are
sufficiently close to the present Fe0.78Tb0.05B0.17 and Fe0.73Tb0.10B0.17 samples for the values
of magnetic moment from this simple model to be used in the analysis below. One further
refinement is to reduce the saturation values of these moments (which will be used to analyse
the 8 K data) to values appropriate to 300 K. These can be estimated using the reduced
magnetization curves given in figure 5 in [8]. The Fe0.78Tb0.05B0.17 sample has a Curie
temperature close to 562 K, so that T/TC ≈ 0.53 at 300 K, and this gives a reduction of
19% in the moment values, while for the Fe0.73Tb0.10B0.17, T/TC ≈ 0.6 at 300 K and the
reduction is 24%. The magnetic moments predicted for the iron and terbium atoms in the two
samples, at the two experimental temperatures, are given in table 2.

5. Non-spin-flip cross-sections

When a neutron passes through the sample and the direction of its spin is unchanged, the two
non-spin-flip scattering cross-sections, ∂σ ++

∂�
and ∂σ−−

∂�
, are given by

∂σ±±

∂�
= ∂σI I

∂�
+

1

3

∂σNSI

∂�
+

∣
∣
∣
∣
∣

〈
∑

i j

(bi ∓ di Szi )(b
∗
j ∓ d∗

j S∗
z j ) exp(iQ(ri − r j))

〉∣
∣
∣
∣
∣
. (3)
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Table 2. The values of the collinear magnetic moments on the iron and terbium atoms in the
two (Fe, Tb)B glasses are given, derived from the elemental values using the model described in
section 3.

Magnetic moment in µB

Composition Temperature (K) µFe µTb

Fe0.78Tb0.05B0.17 300 1.60 6.81
8 1.98 8.41

Fe0.73Tb0.10B0.17 300 1.34 5.68
8 1.76 7.47

The sign convention in equation (3) follows [10] and the term ∂σI I
∂�

is the isotope incoherent
cross-section which has the value 4.0 × 10−2 barns sr−1/atom for both samples [13]. The
third term includes both nuclear and magnetic neutron scattering. It depends on the sum, or
the difference, of bi the nuclear and di Si the magnetic scattering amplitudes of which the latter
now depends on the collinear components Sz of the magnetic spins.

The double summation in equation (3) can be written in terms of the partial structure
factors (PSFs) Sαβ(Q) [14] of a metallic glass as shown by Blétry and Sadoc [15]:
∣
∣
∣
∣
∣

〈
∑

i j

(bi ∓ di Szi )(b
∗
j ∓ d∗

j S∗
z j ) exp(iQ(ri − r j))

〉∣
∣
∣
∣
∣

=
∑

αβ

xαxβ(bα ∓ pα(Q)(bβ ∓ pβ(Q)))Sαβ (Q)

+ [〈(b ∓ p(Q))2〉 − 〈b ∓ p(Q)〉2]. (4)

Here, the magnetic scattering amplitude is written as pi(Q) for brevity, and again depends
only on Sz . The first term on the right-hand side of equation (4) is the total structure factor
S±±(Q) defined in terms of the partial structure factors Sαβ(Q), and the summation αβ is over
the atomic species present. The second term is the disorder scattering which arises from the
presence of two or more different atoms in the sample (which will also have different values
of magnetic moment). The two non-spin-flip cross-sections will have the same general form
as the total structure factor S(Q) of a metallic glass, each with a different amplitude which is
also Q-dependent.

The non-spin-flip cross-sections for the Fe0.78Tb0.05B0.17 glass measured at 300 and 8 K
are shown in figures 1(b) and (c), respectively, and those for the Fe0.73Tb0.10B0.17 sample
in figures 2(b) and (c). Note that the vertical scale for non-spin-flip cross-sections is about
10 times greater than that used the spin-flip cross-sections. The non-spin-flip cross-sections
of the Fe0.78Tb0.05B0.17 glass at 300 K in figure 1(b) are ‘conventional’ in the sense that
the first maximum in S(Q) in the ∂σ−−

∂�
and ∂σ ++

∂�
channels coincide at the same value of

Q ≈ 3.1 Å−1. This has been observed in all previous similar measurements on TM–met-
based glasses [2–4, 16, 17] from the seminal work [15] onwards. However, the other three
examples, Fe0.78Tb0.05B0.17 at 300 K and Fe0.73Tb0.10B0.17 at both 8 and 300 K, exhibit a
hitherto unobserved shift of the first peak between the ∂σ−−

∂�
and ∂σ ++

∂�
channels, which can be

most clearly seen in figures 1(c), 2(b) and (c).

6. Simulation of the non-spin-flip cross-sections of the (Fe, Tb)B glasses

These (Fe, Tb)B glasses are different from other TM–met-based glasses studied so far because
the terbium atom is larger than any other substituted atom and it also carries a significantly larger
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Table 3. The values of the nuclear scattering amplitudes bi for iron, terbium and boron [13] are
given together with the sums (bα + pα(0)) and differences (bα − pα(0)) of the nuclear and magnetic
scattering amplitudes, in the forward limit where f (Q) = 1 when Q = 0.

Nuclear and magnetic scattering amplitudes in fm

bFe = 9.54
bTb = 7.38
bB = 5.30 − 0.213i

Fe0.78Tb0.05B0.17

Q = 0, T = 300 K pFe(0) = 0.268 × 1.60 × f (Q) = 4.29 bFe + pFe(0) = 13.83
— — bFe − pFe(0) = 5.25
— PTb(0) = 0.268 × 6.81 × f (Q) = 18.25 bTb + pTb(0) = 25.63
— — bTb − pTb(0) = −10.87

Q = 0, T = 8 K pFe(0) = 0.268 × 1.98 × f (Q) = 5.25 bFe + pFe(0) = 14.79
— — bFe − pFe(0) = 4.29
— PTb(0) = 0.268 × 8.41 × f (Q) = 22.54 bTb + pTb(0) = 29.92
— — bTb − pTb(0) = −15.16

PB = 0

Fe0.73Tb0.10B0.17

Q = 0, T = 300 K pFe(0) = 0.268 × 1.34 × f (Q) = 3.59 bFe + pFe(0) = 13.13
— — bFe − pFe(0) = 5.95
— PTb(0) = 0.268 × 5.68 × f (Q) = 15.22 bTb + pTb(0) = 22.60
— — bTb − pTb(0) = −7.84

Q = 0, T = 8 K pFe(0) = 0.268 × 1.76 × f (Q) = 4.72 bFe + pFe(0) = 14.26
— — bFe − pFe(0) = 4.82
— PTb(0) = 0.268 × 7.47 × f (Q) = 20.02 bTb + pTb(0) = 27.40
— — bTb − pTb(0) = −12.64

magnetic moment. The nuclear scattering amplitudes bi for iron, terbium and boron [13] are
given in table 3 as well as the magnetic scattering amplitudes p(Q) calculated (in the forward
limit where f (Q) = 1 when Q = 0) from the magnetic moment values of table 2. There are, in
fact, only six elements (and three isotopes) with values of b greater than 10 fm [13], but table 3
shows that the magnetic scattering amplitude of terbium alone is almost twice this in the forward
limit. In addition, the sum (bTb + pTb(0)) and the difference (bTb − pTb(0)) are approximately
30 fm and −15 fm, respectively, using the saturation moment values. The negative value arises
because a (++) neutron will ‘see’ a scattering amplitude bFe − pFe(Q) ≈ 4.82 fm on each
iron atom but (bTb + pTb(Q)) ≈ 27.40 fm on each terbium atom, while a (−−) neutron will
see scattering amplitudes of bFe + pFe(Q) ≈ 14.26 fm and (bTb − pTb(Q)) ≈ −12.64 fm
respectively.

The shift of the first peak probably arises from the strong magnetic scattering from the
terbium atoms, which will occur at smaller values of Q than the contributions from the iron
atoms because of their larger size. Figures 2(a)–(d) support this suggestion, since the shift is
greatest for the sample with the most terbium (10%), and greatest at low temperature, where
the aligned Sz component of the terbium moment is largest.

This suggestion was tested by considering how the various atomic pair correlations
will contribute to the non-spin-flip cross-sections. The characteristic values of Qαβ =
5/4(2π/rαβ) [18] which correspond to the known rαβ atomic pair distances were obtained
from the Goldschmidt radii of iron and terbium and the tetrahedral covalent radius of boron,
in the usual way [19]. The magnitude of each contribution was scaled to the weighting factor
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Table 4. The weighting factors ωαβ for the PSFs in Fe0.73Tb0.10B0.17 glass at 8 K are given
together with the characteristic Qαβ -values for the corresponding atomic pair rαβ correlations,
in increasing order downwards. (Goldschmidt radii: rG

Fe = 1.27 Å, rG
Tb = 1.77 Å; tetrahedral

covalent radius: r t
B = 0.88 Å.)

Weighting factors ωαβ for the
PSFs in ferrimagnetic

Fe0.73Tb0.10B0.17 glass at Q = 0
Atomic pair Interatomic Corresponding
correlation distance (Å) Q value (Å−1) S−−(Q) S++(Q)

Tb–Tb 2rTb = 3.54 2.22 0.016 0.146
Fe–Tb rFe + rTb = 3.04 2.58 −0.261 0.376
Tb–B rTb + rB = 2.65 2.96 −0.023 0.096
Fe–Fe 2rFe = 2.54 3.09 1.074 0.242
Fe–B rFe + rB = 2.15 3.65 0.186 0.124
B–B 2rB = 1.76 4.46 0.008 0.016

ωαβ of the equivalent PSF,

S±±(Q) = ω∓∓
FeFe SFeFe(Q) + ω∓∓

FeBSFeB(Q) + ω∓∓
BB SBB(Q) + ω∓∓

FeTbSFeTb(Q)

+ ω∓∓
TbBSTbB(Q) + ω∓∓

TbTbSTbTb(Q) (5)

which depends on the concentration of the species and on their scattering amplitudes,

S±±(Q) = [(0.83 − x)2(bFe ∓ pFe(Q))2 SFeFe(Q)

+ 2(0.83 − x)0.17(bFe ∓ pFe(Q))bBSFeB(Q)

+ (0.17)2b2
BSBB(Q) + 2(0.83 − x)x(bFe ∓ pFe(Q))(bTb ∓ pTb(Q))SFeTb(Q)

+ 2x0.17(bTb ∓ pTb(Q))bBSTbB(Q)

+ x2(bTb ∓ pTb(Q))2STbTb(Q)]/〈b ∓ p(Q)〉2. (6)

Considering the Fe0.73Tb0.10B0.17 glass with the proposed ferrimagnetic structure at 8 K
and substituting into equation (6) from table 3 leads to the values of the ωαβ which are shown
in table 4.

The values given in this table indicate that S−−(Q) is dominated by contributions for the
SFeFe(Q), SFeTb(Q) and SFeB(Q) PSFs since the remaining three PSFs account for only 5% of
the total. Its largest contribution from SFeFe(Q) (ωFeFe = 1.074) will peak at QFeFe ≈ 3.1 Å−1.
But the second largest contribution from SFeTb(Q) at QFeTb ≈ 2.58 Å−1 has a negative
ωFeTb and this will produce a sharp leading edge to the first peak in S−−(Q). In contrast,
S++(Q) has significant contributions from five of the six PSFs and only SBB(Q) is negligible
(ωBB = 0.0161). More important, positive contributions from STbTb(Q) and SFeTb(Q) occur
at the smaller values of QTbTb ≈ 2.2 Å−1 and QFeTb ≈ 2.6 Å−1, respectively, so that the first
maximum in S++(Q) will be shifted to smaller Q-values than the first maximum in S−−(Q)

in agreement with the observations.
It seemed worthwhile to extend these calculations and make a more complete simulation

of the measured non-spin-flip cross-sections. There appear to be no examples in the literature
where the six PSFs of (Fe, RE)B-type glasses have been derived; however, the three PSFs
have been obtained for the binary glass Fe80B20 from a combination of x-ray and neutron
diffraction experiments with isotope-substituted samples [20]. The SFeFe(Q) and SFeB(Q)

PSFs were digitized from figure 5 of [20] using the package g3data [25] over a range
0.5 Å−1 < Q < 8.0 Å−1 with approximately 200 data points. They are shown in the upper
part of figure 4. The SBB(Q) PSF was not required in the present simulations. These PSFs
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Figure 4. The partial structure factors SFeFe(Q) (solid line) and SFeB(Q) (dashed line) measured
for Fe80B20 glass [20] are shown in the top diagram. In the lower diagram approximations to
the STbTb(Q) (dashed line), SFeTb(Q) (solid line) and STbB(Q) (dash–dot line) partial structure
factors are shown, derived by scaling the scattering vector Q according to the inverse ratios of the
interatomic pair distances rαβ .

were then used to generate approximations to the three absent PSFs STbTb(Q), SFeTb(Q) and
STbB(Q) by scaling their Q-axes by the factors rFe/rTb = 0.718, rFe/〈rFe + rTb〉 = 0.836 and
〈rFe + rB〉/〈rTb + rB〉 = 0.811, respectively. The rescaled curves were then interpolated to give
data points at the same values of Q as the two original PSFs and are shown in the lower part
of figure 4.

Although this scaling process appears to be very arbitrary, its main justification is that it
turns out to be surprisingly successful, as will be shown below. This kind of scaling has often
been used in the past in the search for a ‘universal structure prototype’ for metallic glasses. The
possibility of finding structural prototypes for the TM–met glasses in their stable crystalline
phases has been considered by several different groups; see for example [21, 22]. This even led
to the radical suggestion that one set of three partial pair correlation functions alone might be
sufficient to describe the structures of all binary metallic glasses [23, 24]. In fact, remarkable
agreement has been found between experiment and calculation for a wide variety of glasses
using this approach. Generally, scaling PSFs or the atomic pair density functions is likely to
be most successful when (as here) there is no reason to believe that the Fe–Tb substitution is
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other than random and the terbium concentration relatively low. This means that the dominant
influence of the substitution is to cause an overall expansion of the parent glassy structure.

Simulations were therefore made of the ∂σ−−
∂�

and ∂σ ++

∂�
cross-sections at both temperatures

of 8 and 330 K and for both the Fe0.78Tb0.05B0.17 and Fe0.73Tb0.10B0.17 glasses, by direct
substitution into equations (3), (4) and (6). The nuclear b and p(Q) magnetic scattering
amplitudes were taken from table 3; the form factor f (Q) dependence was introduced using
the seven parameter fits for the Fe3+ and Er+ ions specified in [26], and the PSFs used were
those in figure 4. The diffuse scattering term in equation (4) was calculated and added to the
total cross-sections, but the two incoherent contributions in equation (3) were neglected as
being too small to influence the outcome of the simulation.

The cross-sections calculated initially had the correct characteristics, but were not a good
match to the data, which was attributed to their Q resolution. A polarized beam spectrometer
such as IN20 needs a more open collimation (to ensure high enough count rates in the four spin-
dependent channels) than a diffractometer used for measuring the S(Q)s of metallic glasses.
The calculated non-spin-flip cross-sections were therefore convoluted with a Gaussian whose
half-width was systematically increased until the calculated features matched those of the
measured cross-sections. The final simulations are shown in figures 1(b), (c), 2(b) and (c),
where the dotted line represents the ∂σ−−

∂�
and the solid line the ∂σ ++

∂�
cross-sections, respectively.

The level of agreement is most satisfactory. In particular, the profile of the first peak in ∂σ−−
∂�

is
very well reproduced. The considerable difference in both the magnitude and the position of the
first peaks in ∂σ−−

∂�
and ∂σ ++

∂�
is faithfully simulated in every case. The agreement is probably best

for the Fe0.78Tb0.05B0.17 sample, where the statistical variations are smaller. There are increases
in the measured cross-sections at the smallest values of Q, which are not well reproduced in
the simulation, especially for the Fe0.73Tb0.10B0.17 sample. This may be a real effect, such as
an increase in magnetic scattering at small Q-values caused by magnetic correlations on longer
length scales, which are not in the model. The effect is probably enhanced by a limitation of
the convolution because the full width of the Gaussian does not overlap with the data points at
either end of the Q range.

In general, these simulations are in good agreement with the data and provide excellent
support for the explanation of the shift of the first peak between the ∂σ−−

∂�
and ∂σ ++

∂�
cross-

sections proposed above. Their success provides support for the derivation of the absent PSFs
STbTb(Q), SFeTb(Q) and STbB(Q) by scaling, which was discussed above.

7. Conclusions

A search for non-collinear ferromagnetism in terbium-substituted (Fe0.83−x Tbx)B0.17 metallic
glasses has been made by polarized beam neutron scattering, prompted by reports of a ‘random
anisotropy phase’ at low temperatures.

The spin-flip cross-sections ∂σ±∓
∂�

were found to be

(i) small,
(ii) independent of the scattering vector Q,

(iii) independent of the temperature, and
(iv) of the same magnitude as the nuclear incoherent cross-section.

This means that the magnetic structures in these glasses are almost certainly collinear. A simple
model for the collinear ferrimagnetic state has therefore been presented in which the magnetic
moments on the terbium atoms (µTb = 9.34 µB) are aligned antiparallel to those on the iron
atoms (µFe = 2.2 µB) and both reduce to zero by x = 0.50 in agreement with magnetization
data. The non-spin-flip cross-sections were found to show a hitherto unobserved shift of the
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first peak between the ∂σ−−
∂�

and ∂σ ++

∂�
cross-sections. Simulations were made of these cross-

sections starting from the collinear ferrimagnetic model, using measured and derived partial
structure factors. The simulations correctly predicted the magnitude of the shift of the first
peaks in all four measured data sets. This behaviour is attributed to

(i) the collinear ferrimagnetic correlations between the magnetic moments,
(ii) the very strong magnetic scattering from the terbium atoms, and

(iii) the fact that the terbium atoms are large, so that the contributions to the total scattering
from first neighbour terbium atoms occur at smaller Q-values than those from the other
pair correlations present.
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